4,490 research outputs found

    Computer algebra tools for Feynman integrals and related multi-sums

    Full text link
    In perturbative calculations, e.g., in the setting of Quantum Chromodynamics (QCD) one aims at the evaluation of Feynman integrals. Here one is often faced with the problem to simplify multiple nested integrals or sums to expressions in terms of indefinite nested integrals or sums. Furthermore, one seeks for solutions of coupled systems of linear differential equations, that can be represented in terms of indefinite nested sums (or integrals). In this article we elaborate the main tools and the corresponding packages, that we have developed and intensively used within the last 10 years in the course of our QCD-calculations

    Secure Numerical and Logical Multi Party Operations

    Full text link
    We derive algorithms for efficient secure numerical and logical operations using a recently introduced scheme for secure multi-party computation~\cite{sch15} in the semi-honest model ensuring statistical or perfect security. To derive our algorithms for trigonometric functions, we use basic mathematical laws in combination with properties of the additive encryption scheme in a novel way. For division and logarithm we use a new approach to compute a Taylor series at a fixed point for all numbers. All our logical operations such as comparisons and large fan-in AND gates are perfectly secure. Our empirical evaluation yields speed-ups of more than a factor of 100 for the evaluated operations compared to the state-of-the-art

    On Randomly Projected Hierarchical Clustering with Guarantees

    Full text link
    Hierarchical clustering (HC) algorithms are generally limited to small data instances due to their runtime costs. Here we mitigate this shortcoming and explore fast HC algorithms based on random projections for single (SLC) and average (ALC) linkage clustering as well as for the minimum spanning tree problem (MST). We present a thorough adaptive analysis of our algorithms that improve prior work from O(N2)O(N^2) by up to a factor of N/(logN)2N/(\log N)^2 for a dataset of NN points in Euclidean space. The algorithms maintain, with arbitrary high probability, the outcome of hierarchical clustering as well as the worst-case running-time guarantees. We also present parameter-free instances of our algorithms.Comment: This version contains the conference paper "On Randomly Projected Hierarchical Clustering with Guarantees'', SIAM International Conference on Data Mining (SDM), 2014 and, additionally, proofs omitted in the conference versio

    The Method of Arbitrarily Large Moments to Calculate Single Scale Processes in Quantum Field Theory

    Full text link
    We device a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.Comment: 4 pages LATE

    Refined Holonomic Summation Algorithms in Particle Physics

    Full text link
    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.Comment: Modified Proposition 2.1 and Corollary 2.
    corecore